lunes, 23 de mayo de 2016

DISTRIBUCION DE PAPERS

Esta la distribución de papers del ultimo grupo:

LUNES
MARTES
MIERCOLES
JUEVES
VIERNES
Paper4-1(Isabel)
Paper4-3(marilin)
Papaer4-6(eva)
Paper4-4(julia)
Paper4-2(leydy)

viernes, 20 de mayo de 2016

GRUPO 4 DE PAPERS

Estimados estudiantes, se abre el nuevo grupo de papers con los siguientes cambios:
* los gruupos pueden estar constituidos por 7 estudiantes como maximo
* la hora de defensa es de 5.30 a 6.00, lo que impide que haya choques con otras materias y con laboratorio de biomol

Envien sus solicitudes (leyendo los abstracts), coloque paper y dia, siempre con dos alternativas, si pueden.



Grupo 4
LUNES
MARTES
MIERCOLES
JUEVES
VIERNES






Paper 4-1 
Ubiquitin-Like Proteasome System Represents a Eukaryotic-Like
Pathway for Targeted Proteolysis in Archaea
ABSTRACT The molecular mechanisms of targeted proteolysis in archaea are poorly understood, yet they may have deep evolutionary roots shared with the ubiquitin-proteasome system of eukaryotic cells. Here, we demonstrate in archaea that TBP2, a TATA-binding protein (TBP) modified by ubiquitin-like isopeptide bonds, is phosphorylated and targeted for degradation by proteasomes. Rapid turnover of TBP2 required the functions of UbaA (the E1/MoeB/ThiF homolog of archaea), AAA ATPases (Cdc48/p97 and Rpt types), a type 2 JAB1/MPN/MOV34 metalloenzyme (JAMM/MPN_) homolog (JAMM2), and 20S proteasomes. The ubiquitin-like protein modifier small archaeal modifier protein 2 (SAMP2) stimulated the degradation of TBP2, but SAMP2 itself was not degraded. Analysis of the TBP2 fractions that were not modified by ubiquitin-like linkages revealed that TBP2 had multiple N termini, including Met1-Ser2, Ser2, and Met1-Ser2(p) [where (p) represents phosphorylation]. The evidence suggested that the Met1-Ser2(p) form accumulated in cells that were unable to degrade TBP2. We propose a model in archaea in which the attachment of ubiquitin-like tags can target proteins for degradation by proteasomes and be controlled by N-terminal degrons. In support of a proteolytic mechanism that is energy dependent and recycles the ubiquitin-like protein tags, we find that a network of AAA ATPases and a JAMM/MPN_metalloprotease are required, in addition to 20S proteasomes, for controlled intracellular proteolysis.
Paper 4-2
Crossover Control Study of the Effect of Personal Care Products Containing Triclosan on the Microbiome
We hypothesized that triclosan and triclocarban, components of many household and personal care products (HPCPs), may alter the oral and gut microbiota, with potential consequences for metabolic function and weight. In a double-blind, randomized, crossover study, participants were given triclosan- and triclocarban (TCS)- containing or non-triclosan/triclocarban (nTCS)-containing HPCPs for 4 months and then switched to the other products for an additional 4 months. Blood, stool, gingival plaque, and urine samples and weight data were obtained at baseline and at regular intervals throughout the study period. Blood samples were analyzed for metabolic and endocrine markers and urine samples for triclosan. The microbiome in stool and oral samples was then analyzed. Although there was a significant difference in the amount of triclosan in the urine between the TCS and nTCS phases, no differences were found in microbiome composition, metabolic or endocrine markers, or weight. Though this study was limited by the small sample size and imprecise administration of HPCPs, triclosan at physiologic levels from exposure to HPCPs does not appear to have a significant or important impact on human oral or gut microbiome structure or on a panel of metabolic markers.
Paper4-3
HCF1 and OCT2 Cooperate with EBNA1 To Enhance OriP-Dependent Transcription and Episome Maintenance of Latent Epstein-Barr Virus
ABSTRACT
Epstein-Barr virus (EBV) establishes latent infections as multicopy episomes with complex patterns of viral gene transcription and chromatin structure. The EBV origin of plasmid replication (OriP) has been implicated as a critical control element for viral transcription, as well as viral DNA replication and episome maintenance. Here, we examine cellular factors that bind OriP and regulate histone modification, transcription regulation, and episome maintenance. We found that OriP is enriched for histone H3 lysine 4 (H3K4) methylation in multiple cell types and latency types. Host cell factor 1 (HCF1), a component of the mixedlineage leukemia (MLL) histone methyltransferase complex, and transcription factor OCT2 (octamer-binding transcription factor 2) bound cooperatively with EBNA1 (Epstein-Barr virus nuclear antigen 1) at OriP. Depletion of OCT2 or HCF1 deregulated latency transcription and histone modifications at OriP, as well as the OriP-regulated latency type-dependentCpromoter (Cp) andQ promoter (Qp). HCF1 depletion led to a loss of histone H3K4me3 (trimethylation of histone H3 at lysine 4) and H3 acetylation at Cp in type III latency and Qp in type I latency, as well as an increase in heterochromatic H3K9me3 at these sites. HCF1 depletion resulted in the loss of EBV episomes from Burkitt’s lymphoma cells with type I latency and reactivation from lymphoblastoid cells (LCLs) with type III latency. These findings indicate that HCF1 and OCT2 function at OriP to regulate viral transcription, histone modifications, and episome maintenance. As HCF1 is best known for its function in herpes simplex virus 1 (HSV-1) immediate early gene transcription, our findings suggest that EBV latency transcription shares unexpected features with HSV gene regulation.
Paper4-4
The Epstein-Barr Virus EBNA1 Protein
Epstein-Barr virus (EBV) is a widespread human herpes virus that immortalizes cells as part of its latent infection and is a causative agent in the development of several types of lymphomas and carcinomas. Replication and stable persistence of the EBV genomes in latent infection require the viral EBNA1 protein, which binds speci􀄕c DNA sequences in the viral DNA. 􀀸hile the roles of EBNA1 were initially thought to be limited to effects on the viral genomes, more recently EBNA1 has been found to have multiple effects on cellular proteins and pathways that may also be important for viral persistence. In addition, a role for EBNA1 in lytic infection has been recently identi􀄕ed. e multiple roles of EBNA1 in EBV infection are the subject of this paper.
Paper4-5
Proteomic Profiling of EBNA1-Host Protein Interactions in Latent and Lytic Epstein-Barr Virus Infections
The Epstein-Barr nuclear antigen 1 (EBNA1) protein of Epstein-Barr virus (EBV) is expressed in both latent and lytic modes of EBV infection and contributes to EBV-associated cancers. Using a proteomics approach, we profiled EBNA1-host protein interactions in nasopharyngeal and gastric carcinoma cells in the context of latent and lytic EBV infection. We identified several interactions that occur in both modes of infection, including a previously unreported interaction with nucleophosmin and RNA-mediated interactions with several heterogeneous ribonucleoproteins (hnRNPs) and La protein.
Paper4-6
An Atlas of the Epstein-Barr Virus Transcriptome and Epigenome Reveals Host-Virus Regulatory Interactions
SUMMARY
Epstein-Barr virus (EBV), which is associated with multiple human tumors, persists as a minichromosome in the nucleus of B lymphocytes and induces malignancies through incompletely understood mechanisms. Here, we present a large-scale functional genomic analysis of EBV. Our experimentally generated nucleosome positioning maps and viral protein binding data were integrated with over 700 publicly available high-throughput sequencing data sets for human lymphoblastoid cell lines mapped to the EBV genome. We found that viral lytic genes are coexpressed with cellular cancer-associated pathways, suggesting that the lytic cycle may play an unexpected role in virus-mediated oncogenesis. Host regulators of viral oncogene expression and chromosome structure were identified and validated, revealing a role for the B cell-specific protein Pax5 in viral gene regulation and the cohesin complex in regulating higher order chromatin structure. Our findings provide a deeper understanding of latentiviral persistence in oncogenesis and establish a valuable viral genomics resource for future exploration.