martes, 10 de marzo de 2020

PRIMERA RONDA DE PAPERS - GRUPO IMPAR


PAPER 1
Poly-glycine–alanine exacerbates C9orf72 repeat expansion-mediated DNA damage via sequestration of phosphorylated ATM and loss of nuclear hnRNPA3
Repeat expansion in C9orf72 causes amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Expanded sense and antisense repeat RNA transcripts in C9orf72 are translated into five dipeptide-repeat proteins (DPRs) in an AUG-independent manner. We previously identified the heterogeneous ribonucleoprotein (hnRNP) A3 as an interactor of the sense repeat RNA that reduces its translation into DPRs. Furthermore, we found that hnRNPA3 is depleted from the nucleus and partially mislocalized to cytoplasmic poly-GA inclusions in C9orf72 patients, suggesting that poly-GA sequesters hnRNPA3 within the cytoplasm. We now demonstrate that hnRNPA3 also binds to the antisense repeat RNA. Both DPR production and deposition from sense and antisense RNA repeats are increased upon hnRNPA3 reduction. All DPRs induced DNA double strand breaks (DSB), which was further enhanced upon reduction of hnRNPA3. Poly-glycine–arginine and poly-proline-arginine increased foci formed by phosphorylated Ataxia Telangiectasia Mutated (pATM), a major sensor of DSBs, whereas poly-glycine–alanine (poly-GA) evoked a reduction of pATM foci. In dentate gyri of C9orf72 patients, lower nuclear hnRNPA3 levels were associated with increased DNA damage. Moreover, enhanced poly-GA deposition correlated with reduced pATM foci. Since cytoplasmic pATM deposits partially colocalized with poly-GA deposits, these results suggest that poly-GA, the most frequent DPR observed in C9orf72 patients, differentially causes DNA damage and that poly-GA selectively sequesters pATM in the cytoplasm inhibiting its recruitment to sites of DNA damage. Thus, mislocalization of nuclear hnRNPA3 caused by poly-GA leads to increased poly-GA production, which partially depletes pATM, and consequently enhances DSB.

PAPER 2
The adaptive potential of the middle domain of yeast Hsp90
Comparing the distribution of fitness effects (DFE) of new mutations across different environments quantifies the potential for adaptation in a given environment and its cost in others. So far, results regarding the cost of adaptation across environments have been mixed, and there were no sufficiently large data sets to map its variation along the genome. Here, we study the DFEs of ≈2300 amino-acid changing mutations obtained from deep mutational scanning of 119 amino acids in the middle domain of heat-shock protein Hsp90 in five environments and at two expression levels. This region is known to be important for client binding, stabilization of the Hsp90 dimer, stabilization of the N terminal-Middle and Middle-C terminal interdomains, and regulation of ATPase-chaperone activity. Interestingly, we find that fitness correlates well across diverse and stressful environments, with the exception of one environment, diamide. Consistent with these results, we find very little cost of adaptation; on average only one in seven beneficial mutations is deleterious in another environment. We identify a hotspot of beneficial mutations in a region of the protein that is located within an allosteric center. The identified protein regions that are enriched in beneficial, deleterious, and costly mutations coincide with residues that are involved in the stabilization of Hsp90 interdomains and stabilization of client binding interfaces, or residues that are involved in ATPase chaperone activity of Hsp90. Thus, our study yields information regarding the role and adaptive potential of a protein sequence that complements and extends known structural information.

PAPER 3
Comparison of five assays for DNA extraction from bacterial cells in human faecal samples
Materials and Results. This study assessed five commercial methods, that is, NucliSens easyMag, QIAamp DNA Stool Mini kit, PureLink Microbiome DNA purification kit, QIAamp PowerFecal DNA kit and RNeasy PowerMicrobiome kit, of which the latter has been optimized for DNA extraction. The DNA quantity and quality were determined using Nanodrop, Qubit and qPCR. The PowerMicrobiome kit recovered the highest DNA concentration, whereby this kit also recovered the highest gene copy number of Gram positives, Gram negatives and total bacteria. Furthermore, the PowerMicrobiome kit in combination with mechanical pre‐treatment (bead beating) and with combined enzymatic and mechanical pre‐treatment (proteinase K+mutanolysin+bead beating) was more effective than without pre‐treatment.
Conclusion. From the five DNA extraction methods that were compared, the PowerMicrobiome kit, preceded by bead beating, which is standard included, was found to be the most effective DNA extraction method for bacteria in faecal samples.
Significance and Impact of the Study. The quantity and quality of DNA extracted from human faecal samples is a first important step to optimize molecular methods. Here we have shown that the PowerMicrobiome kit is an effective DNA extraction method for bacterial cells in faecal samples for downstream qPCR purpose.

PAPER 4

DNA extraction approaches substantially influence the assessment of the human breast milk microbiome

In addition to providing nutritional and bioactive factors necessary for infant development, human breast milk contains bacteria that contribute to the establishment of commensal microbiota in the infant. However, the composition of this bacterial community differs considerably between studies. We hypothesised that bacterial DNA extraction methodology from breast milk samples are a substantial contributor to these inter-study differences. We tested this hypothesis by applying five widely employed methodologies to a mock breast milk sample and four individual human breast milk samples. Significant differences in DNA yield and purity were observed between methods (P < 0.05). Microbiota composition, assessed by 16S rRNA gene amplicon sequencing, also differed significantly with extraction methodology (P < 0.05), including in the contribution of contaminant signal. Concerningly, many of the bacterial taxa identified here as contaminants have been reported as components of the breast milk microbiome in other studies. These findings highlight the importance of using stringent, well-validated, DNA extraction methodologies for analysis of the breast milk microbiome, and exercising caution interpreting microbiota data from low-biomass contexts.
PAPER 5
Cumulative exposure to organic pollutants of French children assessed byhair analysis

Children represent one of the most vulnerable parts of the population regarding the effects of pollutants exposure on health. In this study, hair samples were collected between October 2013 and August 2015 from 142 French children originating from different geographical areas (urban and rural) and analysed with a GC/MS-MS method, allowing for the detection of 55 biomarkers for pesticides and metabolites both persistent and non-persistent from different families, including: organochlorines, organophosphates, pyrethroids, azoles, dinitroanilines, oxadiazines, phenylpyrazoles and carboxamidas; 4 polychlorobiphenyls (PCBs) and 5 polybromodiphenylethers (PBDEs). The number of compounds detected in each sample ranged from 9 up to 37 (21 on average), which clearly highlighted the cumulative exposure of the children. The results also showed a wide range of concentration of the pollutants in hair (often more than 100 times higher in the most exposed child compared to the less exposed), suggesting significant disparities in the exposure level, even in children living in the same area. In addition to the detection of currently used chemicals, the presence of persistent organic pollutants (POPs) in children also suggests that the French population is still exposed to POPs nowadays. PCP, DEP, PNP, 3Me4NP, trans-Cl2CA, 3PBA, fipronil and fipronil sulfone, presented statistically significant higher concentration in the hair of boys compared to girls. PCP, PNP and 3Me4NP presented statistically significant higher concentration in younger children. Finally, this study also suggests that local environmental contamination would not be the main source of exposure, and that individual specificities (habits, diet…) would be the main contributors to the exposure to the pollutants analysed here. The present study strongly supports the relevance of hair for the biomonitoring of exposure and provides the first values of organic pollutant concentration in the hair of French children.

PAPER 6
Gene-environment interactions between GSTs polymorphisms and targeted epigenetic alterations in hepatocellular carcinoma following organochlorine pesticides (OCPs) exposure
Exposure to environmental pollutant organochlorine pesticides (OCPs) and the role of tumour suppressor GSTs gene polymorphisms as well as epigenetic alterations have all been well reported in hepatocarcinogenesis. However, the interplay between environmental risk factors and polymorphic tumour suppressor genes or epigenetic factors in hepatocellular carcinoma (HCC) development remains ambiguous. Herein, we investigated the relationship of three GSTs polymorphisms (GSTT1 deletion, GSTM1 deletion, GSTP1 rs1695) as well as GSTP1 promoter region DNA methylation and HCC risk with a particular focus on the interaction with OCPs exposure among 90 HCC cases and 99 controls in a Chinese population. Serum samples were analysed for OCPs exposure employing gas chromatography coupled with mass selective detector (GC-MS). GSTs polymorphisms and epigenetic alterations were determined using high-resolution melting PCR (HRM PCR) and DNA sequencing. After adjusting for confounders (HBV infection, smoking, alcohol consumption, BMI, age, gender), OCPs exposure and GSTP1 methylation is significantly associated with elevated risk of HCC, while no significance is observed for GSTs polymorphisms. Moreover, the effects of OCPs exposure on HCC risk are more pronounced amongst GSTP1 (Ile/Val + Val/Val) and GSTP1 promoter methylation subjects than those who were GSTP1 (Ile/Ile) and unmethylated subjects. The interactions between OCPs exposure and GSTP1 genotype as well as GSTP1 epigenetic status are statistically significant. The current study demonstrates the importance of gene-environment interactions in the multifactorial development of HCC.

PAPER 7

Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding

Background. In late December, 2019, patients presenting with viral pneumonia due to an unidentified microbial agent were reported in Wuhan, China. A novel coronavirus was subsequently identified as the causative pathogen, provisionally named 2019 novel coronavirus (2019-nCoV). As of Jan 26, 2020, more than 2000 cases of 2019-nCoV infection have been confirmed, most of which involved people living in or visiting Wuhan, and human-to-human transmission has been confirmed.

Methods. We did next-generation sequencing of samples from bronchoalveolar lavage fluid and cultured isolates from nine inpatients, eight of whom had visited the Huanan seafood market in Wuhan. Complete and partial 2019-nCoV genome sequences were obtained from these individuals. Viral contigs were connected using Sanger sequencing to obtain the full-length genomes, with the terminal regions determined by rapid amplification of cDNA ends. Phylogenetic analysis of these 2019-nCoV genomes and those of other coronaviruses was used to determine the evolutionary history of the virus and help infer its likely origin. Homology modelling was done to explore the likely receptor-binding properties of the virus.

Findings. The ten genome sequences of 2019-nCoV obtained from the nine patients were extremely similar, exhibiting more than 99·98% sequence identity. Notably, 2019-nCoV was closely related (with 88% identity) to two bat-derived severe acute respiratory syndrome (SARS)-like coronaviruses, bat-SL-CoVZC45 and bat-SL-CoVZXC21, collected in 2018 in Zhoushan, eastern China, but were more distant from SARS-CoV (about 79%) and MERS-CoV (about 50%). Phylogenetic analysis revealed that 2019-nCoV fell within the subgenus Sarbecovirus of the genus Betacoronavirus, with a relatively long branch length to its closest relatives bat-SL-CoVZC45 and bat-SL-CoVZXC21, and was genetically distinct from SARS-CoV. Notably, homology modelling revealed that 2019-nCoV had a similar receptor-binding domain structure to that of SARS-CoV, despite amino acid variation at some key residues.

Interpretation

2019-nCoV is sufficiently divergent from SARS-CoV to be considered a new human-infecting betacoronavirus. Although our phylogenetic analysis suggests that bats might be the original host of this virus, an animal sold at the seafood market in Wuhan might represent an intermediate host facilitating the emergence of the virus in humans. Importantly, structural analysis suggests that 2019-nCoV might be able to bind to the angiotensin-converting enzyme 2 receptor in humans. The future evolution, adaptation, and spread of this virus warrant urgent investigation.

Funding. National Key Research and Development Program of China, National Major Project for Control and Prevention of Infectious Disease in China, Chinese Academy of Sciences, Shandong First Medical University.


PAPER 8

Genotoxicity and DNA damage signaling in response to complexmixtures of PAHs in biomass burning particulate matter from cashewnut roasting

Approximately 3 billion people world-wide are exposed to air pollution from biomass burning. Herein, particulate matter (PM) emitted from artisanal cashew nut roasting, an important economic activity worldwide, was investigated. This study focused on: i) chemical characterization of polycyclic aromatic hydrocarbons (PAHs) and oxygenated (oxy-) PAHs; ii) intracellular levels of reactive oxygen species (ROS); iii) genotoxic effects and time- and dose-dependent activation of DNA damage signaling, and iv) differential expression of genes involved in xenobiotic metabolism, inflammation, cell cycle arrest and DNA repair, using A549 lung cells. Among the PAHs, chrysene, benzo[a]pyrene (B[a]P), benzo[b]fluoranthene, and benz[a]anthracene showed the highest concentrations (7.8–10ng/m3), while benzanthrone and 9,10-anthraquinone were the most abundant oxy-PAHs. Testing of PM extracts was based on B[a]P equivalent doses (B[a]Peq). IC50 values for viability were 5.7 and 3.0nMB[a]Peq at 24h and 48h, respectively. At these low doses, we observed a time- and dose-dependent increase in intracellular levels of ROS, genotoxicity (DNA strand breaks) and DNA damage signaling (phosphorylation of the protein checkpoint kinase 1 – Chk1). In comparison, effects of B[a]P alone was observed at micromolar range. To our knowledge, no previous study has demonstrated an activation of pChk1, a biomarker used to estimate the carcinogenic potency of PAHs in vitro, in lung cells exposed to cashew nut roasting extracts. Sustained induction of expression of several important stress response mediators of xenobiotic metabolism (CYP1A1CYP1B1), ROS and pro-inflammatory response (IL-8TNF-αIL-2COX2), and DNA damage response (CDKN1A and DDB2) was also identified. In conclusion, our data show high potency of cashew nut roasting PM to induce cellular stress including genotoxicity, and more potently when compared to B[a]P alone. Our study provides new data that will help elucidate the toxic effects of low-levels of PAH mixtures from air PM generated by cashew nut roasting.

No hay comentarios:

Publicar un comentario

Notas de Segundo Turno - Grupo impar